accelerometer

How to choose MEMS IMU

IMU (Inertial Measurement Unit) is an inertial measurement unit, which can measure the three-axis acceleration and angular velocity of an object. It is generally used in the measurement link of the system to estimate the pose of the object. The IMU generally includes a three-axis accelerometer and a three-axis gyroscope. The accelerometer detects the acceleration signal of the object in the independent three-axis of the carrier coordinate system, and the gyroscope detects the angular velocity signal of the carrier relative to the navigation coordinate system.

The Advantages and Disadvantages of Inertial Navigation System

INS, full name of Inertial Navigation System, is also referred to as inertial navigation system and sometimes referred to as inertial navigation system. Inertial navigation system is a system which uses gyroscope and accelerometer mounted on the carrier to determine the position of the carrier. Through the measurement data of gyroscope and accelerometer, the motion of the carrier in the inertial reference coordinate system can be determined, and the position of the carrier in the inertial reference coordinate system can be calculated.

What are the disadvantages and remedies of IMU?

IMU (English Inertial measurement unit) is a device used to measure object’s three-axis attitude Angle and acceleration. Common IMUs include a three-axis gyroscope and a three-axis accelerometer, and some 9-axis IMUs also include a three-axis magnetometer.

Working principle of accelerometer:

1.Model equivalence: the accelerometer can be represented by a simple mass block + spring + indicator, as shown in the figure below.

Quartz Accelerometer

Measurement model of accelerometer

The Advantages and Disadvantages of Inertial Navigation System

INS, full name of Inertial Navigation System, is also referred to as inertial navigation system and sometimes referred to as inertial navigation system. Inertial navigation system is a system which uses gyroscope and accelerometer mounted on the carrier to determine the position of the carrier. Through the measurement data of gyroscope and accelerometer, the motion of the carrier in the inertial reference coordinate system can be determined, and the position of the carrier in the inertial reference coordinate system can be calculated.

Subscribe to RSS - accelerometer